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Abstract

Spatiotemporal processes can often be written as hierarchical state-space
processes. In situations with complicated dynamics such as wave propagation,
it is difficult to parameterize state transition functions for high-dimensional
state processes. Although in some cases, prior understanding of the physical
process can be used to formulate prior models for the state transition, this is
not always possible. Alternatively, for processes where one considers discrete
time and continuous space, integro-difference equations suggest that compli-
cated dynamics can be modeled by allowing the associated redistribution kernel
to vary with space and/or time. We show that this is indeed the case and that
by considering a spectral implementation of such models, one can formulate
a spatiotemporal model with relatively few parameters that can accommodate
complicated dynamics.

Keywords: kernel, integro-difference equations, propagation.

1 Introduction

There has been much interest in recent years in modeling spatiotemporal processes
in the environmental and physical sciences. Methods have considered geostatistical
approaches (see the review [1]), multivariate time series approaches (e.g., [2]), space-
time dynamic models (e.g., [3], [4],[5], [6], [7]), and hierarchical approaches (e.g., [8],
[9], [10]).

In particular, we are interested in processes that have coherent dynamical inter-
actions such as exhibited by geophysical or ecological processes with wave behavior.
One approach to accounting for realistic dynamic structure in such complicated
spatiotemporal settings is to consider underlying explicit theoretical relationships.
For example, in an atmospheric/oceanic context one has well-specified determinis-
tic relationships (partial differential equations, PDEs) that describe, to an extent,
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the process of interest. Such information can be used in traditional state-space set-
tings as demonstrated in the “data assimilation” literature in atmospheric/ocean
science (e.g., [11]). Alternatively, one can consider the physics as “approximate”
and actually use the PDEs as a framework for developing prior distributions in a
hierarchical model (e.g., [12],[10]). This approach works very well when one has
an understanding of the underlying physical relationships from which to develop the
PDEs and thus, the priors. However, it is often the case that the scientific knowledge
for a specific problem is not well-developed and one does not have easily-described
physically-based priors. In that case, one may still need efficient methodologies that
can model dynamical behavior with relatively few parameters.

In this paper, an approach for modeling complicated dynamical spatiotemporal
processes is described. This approach is based on a stochastic integro-difference
equation, where the redistribution kernel is allowed to vary with space and/or time.
This methodology makes use of recent developments in nonstationary spatial mod-
eling using convolution kernels (e.g., [13]), as well as theoretical results concerning
deterministic integro-difference equations and their ability to model dynamical pro-
cesses. We show that by considering such models from a spectral perspective (e.g.,
[7], [14]), one naturally obtains dimension reduction in many circumstances.

2 Background

As described by [15], integro-difference equations have recently seen increasing utility
in population ecology. They are discrete-time, continuous-space models that take
the form

yt+1(s) =
∫ ∞
−∞

ks(r)g(yt(r))dr (1)

where yt(s) is a spatiotemporal process at spatial location s and time t, g(·) is some
(possibly nonlinear) function of the y-process, and ks(r) is a “redistribution kernel”
that describes how the process at the previous time at location r is related to the
process at location s at the next time. That is, the function g(yt(r)) describes
the growth of the process at some location r between time t and t + 1, and the
integro-difference equation describes how the resulting growth is redistributed in
space. For example, in ecological settings, one might consider a nonlinear growth
function given by the Beverton-Holt stock-recruitment curve (e.g., [15]). Often, g(·)
is assumed to be linear and the redistribution kernel is assumed not to change with
spatial location, but only depends on the difference in location. In that case, we
rewrite (1) as the following convolution integral

yt+1(s) = g′(0)
∫ ∞
−∞

k(s− r)yt(r)dr, (2)
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where g′( ) is the first-derivative of g( ). Integro-Difference equations of this type
are relatively simple, yet can model relatively complicated dynamics. For example,
Fisher’s “reaction-diffusion” partial differential equation [16], which might describe
the advance of an invading species (among other things) as a wave with known speed,
can also be described by an integro-difference equation with a Gaussian kernel, where
the speed of propagation depends on the kernel variance. Different choices of kernels
lead to different dynamical behavior such as different speeds of the dispersive wave
(e.g., [15], [17]).

These results suggest that more complicated or “extra-diffusive” dynamical be-
havior can be modeled by altering the kernel. Specifically, we are interested in
propagation of features across space through time. For example, consider the one-
dimensional Gaussian spatial kernel

ks(r, θ1, θ2) =
1

θ2

√
2π

exp{−.5(r − θ1 − s)2/θ2} (3)

where the kernel is centered at θ1−s and thus is shifted by θ1 spatial units relative to
location s, and θ2 is the scale parameter. We refer to θ1 as the translation parameter
and θ2 as the dilation parameter, analogous to the usual translation and dilation
in the description of wavelet basis functions. Presumably, in the integro-difference
kernel context, these parameters influence the dynamical evolution of the y process.
We investigate this influence with some simple simulations, as discussed below.

Figure 1 shows a successive integration of (2) with a 2-D Gaussian kernel anal-
ogous to (3), where the kernel is centered at location s (i.e., translation parameters
are zero for all spatial locations). Note that over time, this suggests that the pro-
cess propagates in a diffusive fashion, but the center of the disturbance does not
propagate; we refer to this as diffusive propagation.

Figure 2 shows a similar simulation but with the kernel translated to the left and
down relative to s, identically for all s. In this case the disturbance shows diffusive
propagation but the center of the disturbance also propagates to the right and up,
with speed proportional to the translation distance; we refer to this as extra-diffusive
propagation. Notice that in this case the spread (dilation) of the kernel is also larger
than in the previous figure and thus the process diffuses at a greater rate. Now, con-
sider a spatially-varying kernel, in which the translation parameters are allowed to
vary with space. Such models have recently been considered by [13] for spatial prob-
lems in which a convolution of white noise is used to generate nonstationary spatial
covariance models. In the integro-difference equation setting, such spatially-varying
(heterogeneous) kernels can capture more complicated dynamics than homogeneous
kernels. For example, Figure 3 shows arrows that indicate the propagation direction
at each location implied by slowly spatially-varying translation parameters. That is,

169



0
5

10
15

0
5

10
15

0

0.2

0.4

0.6

0.8

x

kernel

y 10 12 14 16 18 20
8

9

10

11

12

13

14
Kernel Orientation

x

y

T :  2

x

y

5 10 15 20 25 30

5

10

15

20

T :  6

x

y

5 10 15 20 25 30

5

10

15

20

T :  10

x

y

5 10 15 20 25 30

5

10

15

20

T :  14

x

y

5 10 15 20 25 30

5

10

15

20

T :  18

x

y

5 10 15 20 25 30

5

10

15

20

T :  22

x

y

5 10 15 20 25 30

5

10

15

20

Figure 1: Simulation using kernel in 2-d space with no translation.
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Figure 2: Simulation using kernel in 2-d space with kernel translated to the left and
down, implying propagation up and to the right.

170



0 10 20 30 40 50 60

5

10

15

20

25

30

Figure 3: Vectors indicating spatial variation in translation parameter in 2-d spatial
kernel. Note that the arrow points in the direction in which the propagation is sug-
gested by the translation (i.e., actual translation vector is in the opposite direction
as shown).

the kernel is translated in the opposite direction (relative to s) shown by the arrows.
Figure 4 shows the resulting propagation of a disturbance; note how the disturbance
propagates in a circular fashion.

Clearly, different kernels can give rise to very complicated dynamics from a
deterministic point of view. As is the case for PDE models, we seldom expect
real-world processes to behave as purely deterministic processes. Thus, to model
realistic processes, we must allow for random kernels and additive noise-forcing.
The next section describes such a model.
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Figure 4: Propagation suggested by the spatially-varying translation parameters
shown in Figure 3.

3 Methodology

Consider the stochastic integro-difference equation

yt+1(s) = γ

∫
ks(r;θs)yt(r)dr + η̃t+1(s) (4)

where η̃ is a spatially-colored noise process and the parameter γ is analogous to the
derivative term in (2) but is used in this context to control (and allow for) explosive
growth. A similar model was considered by [18] and [7] as a “spatially descriptive,
temporally dynamic” model, and by [19], [20] as “blur-generated” space-time models.
Although these authors recognized that this modeling framework is powerful in
that it can easily accommodate non-separable space-time covariance structures, the
flexibility of such models to accommodate complicated extra-diffusive dynamics was
not considered in the statistical context.

3.1 Spectral Formulation

As is often the case (e.g., [14]), the model (4) is easier to implement in the hetero-
geneous kernel case if we work in the spectral domain. Thus, as in [7] we expand
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the kernel and the process in terms of some spectral basis functions φi(s):

ks(r;θs) =
∑

i

bi(s;θs)φi(r) (5)

yt(s) =
∑

j

αj(t)φj(s) (6)

where basis functions are complete and orthonormal

∫

D
φk(s)φl(s)ds =

{
1 for k = l,
0 otherwise.

If the process of interest has non-trivial dynamics, then the kernel has significant
spread and thus can be represented as the linear combination of a relatively small
set of spectral basis functions. In that case, the sum in (5) is truncated at I and
upon substitution of (5) and (6) into (4), we get

yt+1(s) = γb′(s;θs)α
(1)
t + η̃t+1(s) (7)

where b(s; θs) ≡ [b1(s; θs) . . . bI(s; θs)]′ and α(1)
t ≡ [α1(t) . . . αI(t)]′. So, for spatial

locations {s1, . . . , sn} (which need not be data locations if there is a “measurement”
model that conditions the data on y),

yt+1 = γB′θα
(1)
t + η̃t+1

where yt+1 ≡ [yt+1(s1) . . . yt+1(sn)]′ and Bθ = [b(s1; θs1) . . .b(sn; θsn)]. Thus,

α
(1)
t+1 = Φ′(1)B

′
θα

(1)
t + η(1)

t+1 (8)

α
(2)
t+1 = Φ′(2)B

′
θα

(1)
t + η(2)

t+1, (9)

where α(2)
t ≡ [αI+1(t) . . . αn(t)]′, Φ(1) ≡ [φ1 . . . φI ], Φ(2) ≡ [φI+1 . . . φn], and

if we assume that η̃t ∼ N(0,Cη̃), then η(1)
t ∼ N(0,C(1)

η ), η(2)
t ∼ N(0,C(2)

η ), where
C(j)
η ≡ Φ′(j)Cη̃Φ(j) for j = 1, 2.

Note that the evolution of α(2) in (9) depends on the past value of the α(1)

process rather than the α(2) process. Depending on the dimension reduction (i.e.,
the dilation of the kernel) and the underlying process, one might assume that α(2)

t

is a non-dynamic spatiotemporal component without much loss of predictive power
(e.g., [7]).
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3.2 Modeling Bθ

The methodology of Section 3.1 does not depend explicitly on the functional form
of the kernel, with the exception of the assumption that the kernel can be modeled
reasonably well as a finite sum of orthogonal basis functions. Indeed, since the final
model formulation is in spectral space, a nonparametric estimation procedure need
only find estimates for the parameters in B (where we drop the θ subscript in this
case). One may consider this problem using moment-based estimators in a Kalman
filter framework as in [7]. Likelihood estimates obtained from E-M algorithm ap-
proaches can be used as well provided the number of parameters is reasonably small
(e.g., [21]).

In cases where B is high-dimensional, we can model bi ≡ {bi(s1), . . . , bi(sn)}′ in
terms of another spectral decomposition. That is, bi = Ψβi, where Ψ is an n × J
matrix of basis functions (which may be the same as we used before, ψi(s) = φi(s),
but need not be), and βi ≡ [βi(1), . . . , βi(J)]′, where J << n. In this case, we can
write (8) as

α
(1)
t+1 = Φ′(1)Ψβαt + η(1)

t+1 (10)

where β ≡ [β1 . . .βI ] is an J × I matrix of parameters. Thus, in this approach
the dimensionality of the parameters has been reduced from n × I to J × I. If the
dimensionality has been sufficiently reduced, it may be possible to use likelihood-
based estimation approaches efficiently.

3.2.1 Parametric Formulation

A parsimonious representation of B can be obtained if one considers a specific para-
metric kernel function. This approach has the additional advantage that we can
control the dynamics by altering the translation and dilation of the kernel in terms
of a relatively few number of parameters. Although easily implemented in a two-
dimensional spatial setting, for illustration we focus on the 1-d spatial case here.

Consider the Gaussian kernel (3). Let φi(s) be Fourier basis functions. Of course,
the Fourier transform of the Gaussian kernel is just its characteristic function

bj(s; θ1(s), θ2(s)) = exp{iωj(θ1(s) + s)− .5ω2
j θ2(s)} (11)

= cos{ωj(θ1(s) + s)} exp{−.5ω2
j θ2(s)} (12)

+i sin{ωj(θ1(s) + s)} exp{−.5ω2
j θ2(s)}

where ωj is the spatial frequency. Thus, the real and imaginary coefficients of
the characteristic function correspond to cosine and sine Fourier basis functions,
respectively. These coefficients are completely determined if we know the kernel
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parameters θ1(s) and θ2(s) at each spatial location s. That is we need to specify
the spatial fields θ1 = [θ1(s1) . . . θ1(sn)]′ and θ2 = [θ2(s1) . . . θ2(sn)]′. For example,
we might assume θ1 ∼ N(µ1,Cθ1) and θ2 ∼ LN(µ2,Cθ2). Since we expect the
dynamics to be relatively slowly varying over space, the spatial structure in these
fields might be relatively simple.

3.3 Temporally-Varying Kernels

To model processes with complicated dynamics, time-varying kernels might be con-
sidered. Thus, in addition to letting θ1 and θ2 vary spatially, we allow them to
vary temporally as well; that is, θ1(t) and θ2(t). In that case, the model (8) be-
comes α(1)

t+1 = Φ′(1)B
′
θt
α

(1)
t + ηt+1. The θ processes might be modeled using one of

the recently developed classes of space-time covariance functions ([22], [23]), if the
dimensionality is not an issue. Alternatively, one might consider a spatiotemporal
dynamical model for these parameters such as:

θi(t+ 1) = Hθi(t) + ζi(t+ 1), (13)

where the subscript i refers to the i-th parameter of the redistribution kernel. One
must be careful in this setting not to simply replace one complicated spatiotem-
poral problem by another of equal (or greater) complexity! Typically, one would
expect that the spatiotemporal dynamics of the parameters are substantially less
complicated than the dynamics of the original process. Dimensionality might be
reduced by another spectral decomposition of these parameter processes. That is,
one might project the parameter vector on some orthogonal basis set Υ (n×p), such
that ξi(t) = Υ′θi(t), then model ξi(t). Ideally, one could select p such that most
of the variability in θi(t) is captured by a few spectral coefficients (i.e., p << n).
This is a realistic possibility as we typically expect the spatial variation in θi(t)
to be relatively large scale (i.e., we don’t expect the dynamical behavior to change
dramatically over small spatial scales).

4 Example: Modeling Cloud Intensity over Time

The propagation of clouds is a complicated nonlinear function of various atmospheric
state processes. In fact, cloud dynamics are still the subject of intense research in the
atmospheric science community. Cloud parameterizations are a fundamental com-
ponent of atmospheric General Circulation Models (GCM’s) used to study climate
and weather. Our interest here is whether the dynamics of such cloud processes
can be modeled adequately by the kernel-based integro-difference equation model
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outlined above. To examine this, we obtained cloud intensity information from a
regional climate model as discussed in [24].

We consider the data Zt(si), where i = 1, . . . , n and t = 1, . . . , T . Specifically, we
selected n = 60 and T = 80. The spatial locations are evenly spaced at a resolution
of 52 km and represent a 1-D spatial (longitudinal) domain over the central U.S. The
temporal sampling is every 6 hours and is representative of large scale forcing in late
March 1979. The data values are cloud water content in grams of water per kilogram
of air (g/kg). Thus, the data have positive integer support at each spatial location.
For the purposes of this study, we remove 40% of the data by randomly selecting
from the 60 spatial locations, assuming the data are missing from all times at the
selected pixels. The goal is to model the cloud intensity (cloud water content) and
thus predict the cloud water content over the whole domain, including the locations
for which data are missing.

4.1 Non-Gaussian Hierarchical Spatiotemporal Dynamic Model

Similar to the non-Gaussian spatial modeling approach of [25], we assume that
conditional on the Poisson intensity process at all spatial and temporal locations of
interest, the data are distributed as independent Poisson random variables:

Zt(si)|λt ∼ Poi(k′i,tλt) (14)

where λt ≡ [λt(s1), . . . , λt(sn)]′ is the Poisson intensity process at all spatial locations
for time t, and ki,t is an incidence vector indicating whether a prediction location
has an associated observation. We then let ut ≡ log(λt) and assume

ut|µ, ν,yt, σ2
ε ∼ N(µ1 + νΦαt, σ2

ε I), (15)

where yt = Φαt, µ is the overall mean effect, ν is a scaling parameter, and σ2
ε

represents extra-Poisson variability. We then make use of the model (8) and (9),

α
(1)
t |α(1)

t−1,Bθ,C(1)
η ∼ N(Φ′(1)B

′
θα

(1)
t−1,C

(1)
η )

α
(2)
t |α(1)

t−1,Bθ,C(2)
η ∼ N(Φ′(2)B

′
θα

(1)
t−1,C

(2)
η ).

Note that we have assumed γ = 1 in this example. One of our primary inter-
ests with these data is to determine the overall tendency of the spatially-varying
translation parameter. Thus, we assume θ1 is relatively smooth and let θ1 = Υf ,
with f ∼ N(0,Σf ), where Υ are the first p (p = 5) eigenvectors of an exponential
correlation matrix with relatively strong spatial dependence (cθ(h) = exp(−h/30)
for distances h = 0, . . . , 60) and Σf is the associated diagonal matrix. For this
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Figure 5: Left Panel: Posterior mean of λt; Center Panel: Cloud intensity “Data”;
Right Panel: Cloud intensity “truth”.

study, we assume that θ2 is fixed such that θ2(si) = 4 for all i = 1, . . . , n. We let
C(j)
η = Φ′(j)CηΦ(j) where Cη is a Gaussian covariance matrix with fixed parame-

ters (cη(h) = exp(−h2/200) for h = 0, . . . , 60). We also specify uniform priors for
µ ∼ Unif [−10, 10] and ν ∼ Unif [.5, 5] and let σ2

ε ∼ IG(qε, rε), where qε = 3 and
rε = 5. Finally, we must specify a prior distribution for the initial state for the α(1)

process; we let α(1)
0 ∼ N(0, .05I).

Implementation is via a Gibbs sampler, with straightforward conjugate updating
with the exception of ut and f , which are updated via Metropolis-Hastings steps.
The Gibbs sampler was run for 10000 iterations after burn-in. Standard errors were
computed by batching, to account for the correlation in the Markov chain.

4.2 Results

Figure 5 shows the posterior mean of the intensities λt as well as the “data” Zt and
the truth. These plots only consider 1-D space and are interpreted by considering
the x-axis as 1-D space (e.g., “longitude”) and the y-axis as time, such that time
increases from top to bottom. Thus, if one sees a diagonal stripe slanted to the right,
it suggests propagation to the right (or East since the x-axis represents longitude);
similarly, a left-slanted stripe suggests propagation to the left (West).

The model is able to fill in the missing information in a dynamically reasonable
fashion. There is some suggestion in the visual inspection of the spatiotemporal cloud
process that the speed of propagation is slower on the Eastern end of the domain than
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in the Western. Figure 6 shows the posterior mean of the θ1 translation parameter
spatial process. This posterior mean confirms that the dynamical propagation is to
the right over the entire domain, but is slower from about x = 40 to x = 60 than in
the Western portion of the domain.

5 Discussion

We have presented a spatiotemporal hierarchical model that is based on a stochastic
integro-difference equation with heterogeneous redistribution kernels. We showed
that by letting kernels exhibit spatially-varying translation and dilation, complicated
dynamics can be modeled. The methodology was demonstrated on cloud-intensity
data from a regional climate model. Although the modeling approach works well for
the cloud water content data, one can imagine that over longer time-spans the kernels
should change with time as well. For example, the dynamics in the mid-latitudes
are different in the spring than in the summer due to the annual migration of the
jet stream and associated semipermanent high and low pressure systems. Thus, the
kernel translation and dilation will change accordingly. As discussed, the modeling
approach outlined here can easily accommodate time-varying kernels. In fact, one
might allow the kernels to be influenced by other atmospheric variables, suggesting
a possible approach to dynamic parameterization of clouds in climate models.
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